Week 6

6.1 Group Homomorphisms (cont’d)

Example 6.1.1. e For any nonzero integer n, we have nZ < Z, and the map
¢ : nZ, — 7 defined by nk — k is an isomorphism. Note that nZ < Z
is proper whenever |n| > 1, so a proper subgroup can be isomorphic to the
parent group!

e On the other hand, for any integer n, the map ¢ : Z — Z defined by
k — nk is a homomorphism but not an isomorphism unless |n| = 1.

e Given a positive integer n, the remainder map ¢ : Z — Z,, defined by
mapping k to its remainder when divided by 7 is a surjective homomor-
phism (check this!).

e The map ¢ : Z — Z defined by k — k + 1 is not a homomorphism.
Example 6.1.2. The group:

cosf) —sinf
G_{(sin9 cos 6 ) ’ QER}

G'={2€C:|z| =1}

Here, the group operation on G is matrix multiplication, and the group operation
on GG’ is the multiplication of complex numbers.

is isomorphic to

Proof. Each element in (i’ is equal to % for some § € R. Defineamap ¢ : G —

G’ as follows:
¢ cosf) —sinf T
sinf cos# -

Exercise: ¢ is a bijective group homomorphism. ]
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Here are some basic properties of group homomorphisms:
Proposition 6.1.3. If ¢ : G — G’ is a group homomorphism, then:

1. ¢(eq) = e

2. ¢(g7") = ¢lg) ! forallg € G.

3. o(g") = p(g)" forall g € G, n € Z.

Proof. We prove the first claim, and leave the rest as an exercise.
Since e is the identity element of G, we have eg * e = eg. On the other
hand, since ¢ is a group homomorphism, we have:

dlea) = ¢lea * eq) = ¢lea) ¥ ¢(eq).

Since G is a group, ¢(eq) ! exists in G, hence:

dlec) ™ ¥ dleq) = dlec) ™' + (d(ec) ¥ dleq))

The left-hand side is equal to e/, while by the associativity of *’ the right-hand
side is equal to ¢(eq). O

Let ¢ : G — G’ be a homomorphism of groups. The image of ¢ is defined
as:

im ¢ := ¢(G) = {¢(g) : g € G}
The kernel of ¢ is defined as:
kerg = {g € G : ¢l9) = ewr}.

Proposition 6.1.4. The image of ¢ is a subgroup of G'. The kernel of ¢ is a
subgroup of G.

Proof. Exercise. ]

Proposition 6.1.5. A group homomorphism ¢ : G — G’ is one-to-one if and
only if ker ¢ = {eg}.

Proof. Exercise. [

As we have mentioned, isomorphisms preserve algebraic properties. Here are
some examples.

Proposition 6.1.6. Let G be a cyclic group, then any group isomorphic to G is
also cyclic.
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Proof. Exercise. ]
Example 6.1.7. The cyclic group Z, is not isomorphic to Zy X Zs.

Proof. Each element of G = Zy x Zs is of order at most 2. Since |G| = 4, G
cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be
isomorphic to the cyclic group Zj. ]

Proposition 6.1.8. Let G be an abelian group, then any group isomorphic to G is
abelian.

Example 6.1.9. The group Dg has 12 elements. We have seen that Dg = (13, s),
where 4 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if Dg is isomorphic to Zg X Zs. The answer is no. For Zg X Z,
is abelian, but Dyg is not.

Remark. Both claims remain true if we replace isomorphism by a surjective ho-
momorphism, namely, if ¢ : G — G’ is a surjective homomorphism, then we
have

e (G iscyclic = (' is cyclic,

e (i is abelian = (' is abelian.
Try to prove these assertions by yourself!
Exercise. Check that the restriction of a homomorphism ¢ : G — G’ to a
subgroup H < G gives a homomorphism from H to G'.

Proposition 6.1.10. If ¢ : G — G’ is an isomorphism, then |¢(g)| = |g| for any
g€ @G.

Proof. By the previous exercise, the restriction of ¢ to the subgroup (g) gives a
homomorphism

Pl (9) — &,
which is injective and with image

im ¢l = (¢(9))-

So ¢|(g is an isomorphism from (g) to (¢(g)); in particular, we have |$(g)| =
91 O
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