
Week 6

6.1 Group Homomorphisms (cont’d)
Example 6.1.1. • For any nonzero integer n, we have nZ < Z, and the map

φ : nZ −→ Z defined by nk �→ k is an isomorphism. Note that nZ < Z

is proper whenever |n| > 1, so a proper subgroup can be isomorphic to the

parent group!

• On the other hand, for any integer n, the map φ : Z −→ Z defined by

k �→ nk is a homomorphism but not an isomorphism unless |n| = 1.

• Given a positive integer n, the remainder map φ : Z −→ Zn defined by

mapping k to its remainder when divided by n is a surjective homomor-

phism (check this!).

• The map φ : Z −→ Z defined by k �→ k + 1 is not a homomorphism.

Example 6.1.2. The group:

G =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ θ ∈ R

}

is isomorphic to

G′ = {z ∈ C : |z| = 1}.
Here, the group operation on G is matrix multiplication, and the group operation

on G′ is the multiplication of complex numbers.

Proof. Each element in G′ is equal to eiθ for some θ ∈ R. Define a map φ : G −→
G′ as follows:

φ

((
cos θ − sin θ
sin θ cos θ

))
= eiθ.

Exercise: φ is a bijective group homomorphism.
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Here are some basic properties of group homomorphisms:

Proposition 6.1.3. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof. We prove the first claim, and leave the rest as an exercise.

Since eG is the identity element of G, we have eG ∗ eG = eG. On the other

hand, since φ is a group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)
−1 exists in G′, hence:

φ(eG)
−1 ∗′ φ(eG) = φ(eG)

−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand

side is equal to φ(eG).

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined

as:

imφ := φ(G) := {φ(g) : g ∈ G}
The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′}.

Proposition 6.1.4. The image of φ is a subgroup of G′. The kernel of φ is a
subgroup of G.

Proof. Exercise.

Proposition 6.1.5. A group homomorphism φ : G −→ G′ is one-to-one if and
only if kerφ = {eG}.
Proof. Exercise.

As we have mentioned, isomorphisms preserve algebraic properties. Here are

some examples.

Proposition 6.1.6. Let G be a cyclic group, then any group isomorphic to G is
also cyclic.
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Proof. Exercise.

Example 6.1.7. The cyclic group Z4 is not isomorphic to Z2 × Z2.

Proof. Each element of G = Z2 × Z2 is of order at most 2. Since |G| = 4, G
cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be

isomorphic to the cyclic group Z4.

Proposition 6.1.8. Let G be an abelian group, then any group isomorphic to G is
abelian.

Example 6.1.9. The group D6 has 12 elements. We have seen that D6 = 〈r2, s〉,
where r2 is a rotation of order 6, and s is a reflection, which has order 2. So, it is

reasonable to ask if D6 is isomorphic to Z6 × Z2. The answer is no. For Z6 × Z2

is abelian, but D6 is not.

Remark. Both claims remain true if we replace isomorphism by a surjective ho-

momorphism, namely, if φ : G −→ G′ is a surjective homomorphism, then we

have

• G is cyclic⇒ G′ is cyclic,

• G is abelian⇒ G′ is abelian.

Try to prove these assertions by yourself!

Exercise. Check that the restriction of a homomorphism φ : G −→ G′ to a

subgroup H < G gives a homomorphism from H to G′.

Proposition 6.1.10. If φ : G −→ G′ is an isomorphism, then |φ(g)| = |g| for any
g ∈ G.

Proof. By the previous exercise, the restriction of φ to the subgroup 〈g〉 gives a

homomorphism

φ|〈g〉 : 〈g〉 −→ G′,

which is injective and with image

imφ|〈g〉 = 〈φ(g)〉.

So φ|〈g〉 is an isomorphism from 〈g〉 to 〈φ(g)〉; in particular, we have |φ(g)| =
|g|.
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