Week 6

6.1 Group Homomorphisms (cont'd)

- **Example 6.1.1.** For any nonzero integer n, we have $n\mathbb{Z} < \mathbb{Z}$, and the map $\phi: n\mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $nk \mapsto k$ is an isomorphism. Note that $n\mathbb{Z} < \mathbb{Z}$ is proper whenever $|n| > 1$, so a proper subgroup can be isomorphic to the parent group!
	- On the other hand, for any integer n, the map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $k \mapsto nk$ is a homomorphism but *not* an isomorphism unless $|n| = 1$.
	- Given a positive integer n, the remainder map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}_n$ defined by mapping k to its remainder when divided by n is a surjective homomorphism (check this!).
	- The map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $k \mapsto k+1$ is *not* a homomorphism.

Example 6.1.2. The group:

$$
G = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}
$$

is isomorphic to

$$
G' = \{ z \in \mathbb{C} : |z| = 1 \}.
$$

Here, the group operation on G is matrix multiplication, and the group operation on G' is the multiplication of complex numbers.

Proof. Each element in G' is equal to $e^{i\theta}$ for some $\theta \in \mathbb{R}$. Define a map $\phi : G \longrightarrow G'$ as follows: G' as follows:

$$
\phi\left(\begin{pmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{pmatrix}\right) = e^{i\theta}.
$$

Exercise: ϕ is a bijective group homomorphism.

 \Box

Here are some basic properties of group homomorphisms:

Proposition 6.1.3. *If* ϕ : $G \longrightarrow G'$ *is a group homomorphism, then:*

1. $\phi(e_G) = e_{G'}$.

2.
$$
\phi(g^{-1}) = \phi(g)^{-1}
$$
, for all $g \in G$.

3.
$$
\phi(g^n) = \phi(g)^n
$$
, for all $g \in G$, $n \in \mathbb{Z}$.

Proof. We prove the first claim, and leave the rest as an exercise.

Since e_G is the identity element of G, we have $e_G * e_G = e_G$. On the other hand, since ϕ is a group homomorphism, we have:

$$
\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) *' \phi(e_G).
$$

Since G' is a group, $\phi(e_G)^{-1}$ exists in G', hence:

$$
\phi(e_G)^{-1} *' \phi(e_G) = \phi(e_G)^{-1} *' (\phi(e_G) *' \phi(e_G))
$$

The left-hand side is equal to $e_{G'}$, while by the associativity of $*'$ the right-hand side is equal to $\phi(e_{G})$ side is equal to $\phi(e_G)$. \Box

Let $\phi : G \longrightarrow G'$ be a homomorphism of groups. The **image** of ϕ is defined as:

$$
\operatorname{im} \phi := \phi(G) := \{ \phi(g) : g \in G \}
$$

The **kernel** of ϕ is defined as:

$$
\ker \phi = \{ g \in G : \phi(g) = e_{G'} \}.
$$

Proposition 6.1.4. *The image of* ϕ *is a subgroup of* G' *. The kernel of* ϕ *is a subgroup of* G *subgroup of* G*.*

Proof. Exercise.

Proposition 6.1.5. *A group homomorphism* $\phi : G \longrightarrow G'$ *is one-to-one if and* only if ker $\phi = \{e_{\alpha}\}\$ *only if* ker $\phi = \{e_G\}$.

Proof. Exercise.

As we have mentioned, isomorphisms preserve algebraic properties. Here are some examples.

Proposition 6.1.6. *Let* G *be a cyclic group, then any group isomorphic to* G *is also cyclic.*

 \Box

 \Box

Proof. Exercise.

Example 6.1.7. The cyclic group \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Each element of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ is of order at most 2. Since $|G| = 4$, G cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be isomorphic to the cyclic group \mathbb{Z}_4 . isomorphic to the cyclic group \mathbb{Z}_4 .

Proposition 6.1.8. *Let* G *be an abelian group, then any group isomorphic to* G *is abelian.*

Example 6.1.9. The group D_6 has 12 elements. We have seen that $D_6 = \langle r_2, s \rangle$, where r_2 is a rotation of order 6, and s is a reflection, which has order 2. So, it is reasonable to ask if D_6 is isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_2$. The answer is no. For $\mathbb{Z}_6 \times \mathbb{Z}_2$ is abelian, but D_6 is not.

Remark. Both claims remain true if we replace isomorphism by a surjective homomorphism, namely, if $\phi : G \longrightarrow G'$ is a surjective homomorphism, then we have have

- G is cyclic \Rightarrow G' is cyclic,
- *G* is abelian \Rightarrow *G'* is abelian.

Try to prove these assertions by yourself!

Exercise. Check that the restriction of a homomorphism $\phi : G \longrightarrow G'$ to a subgroup $H \subset G$ gives a homomorphism from H to G' subgroup $H < G$ gives a homomorphism from H to G' .

Proposition 6.1.10. *If* ϕ : $G \longrightarrow G'$ *is an isomorphism, then* $|\phi(g)| = |g|$ *for any* $g \in G$ $q \in G$.

Proof. By the previous exercise, the restriction of ϕ to the subgroup $\langle q \rangle$ gives a homomorphism

$$
\phi|_{\langle g \rangle} : \langle g \rangle \longrightarrow G',
$$

which is injective and with image

$$
\operatorname{im} \phi|_{\langle g \rangle} = \langle \phi(g) \rangle.
$$

So $\phi|_{\langle g \rangle}$ is an isomorphism from $\langle g \rangle$ to $\langle \phi(g) \rangle$; in particular, we have $|\phi(g)| = |g|$. $|g|.$

 \Box